Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Biomedicines ; 9(8)2021 Jul 22.
Article in English | MEDLINE | ID: covidwho-1350297

ABSTRACT

Vaccine efficacy is based on clinical data. Currently, the assessment of immune response after SARS-CoV-2 vaccination is scarce. A total of 52 healthcare workers were immunized with the same lot of BNT162b2 vaccine. The immunological response against the vaccine was tested using a T-specific assay based on the expression of CD25 and CD134 after stimulation with anti-N, -S, and -M specific peptides of SARS-CoV-2. Moreover, IgG anti-S2 and -RBD antibodies were detected using ELISA. Furthermore, the cell subsets involved in the response to the vaccine were measured in peripheral blood by flow cytometry. Humoral-specific responses against the vaccine were detected in 94% and 100% after the first and second doses, respectively. Therefore, anti-S T-specific responses were observed in 57% and 90% of the subjects after the first and second doses of the vaccine, respectively. Thirty days after the second dose, significant increases in T helper 1 memory cells (p < 0.001), peripheral memory T follicular helper (pTFH) cells (p < 0.032), and switched memory (p = 0.005) were observed. This study describes the specific humoral and cellular immune responses after vaccination with the new mRNA-based BNT162b2 vaccine. A mobilization of TFH into the circulation occurs, reflecting a specific activation of the immune system.

2.
Front Med (Lausanne) ; 8: 655785, 2021.
Article in English | MEDLINE | ID: covidwho-1186838

ABSTRACT

Objectives: Several parameters aid in deciphering between viral and bacterial infections; however, new tools should be investigated in order to reduce the time to results and proceed with an early target-therapy. Validation of a biomarker study, including CD64 and CD169 expression, was conducted. Material and Methods: Patients with active SARS-CoV-2 infection (ACov-2), bacterial infection (ABI), healthy controls, and antiretroviral-controlled chronic HIV infection were assessed. Whole blood was stained and, after lysing no-wash protocol, acquired by flow cytometry. The median fluorescence intensity (MFI) of CD64 and CD169 was measured in granulocytes, monocytes, and lymphocytes. The CD64 MFI ratio granulocytes to lymphocytes (CD64N) and CD169 MFI ratio monocytes to lymphocytes (CD169Mo) were evaluated as biomarkers of acute bacterial and viral infection, respectively. Results: A CD64N ratio higher than 3.3 identified patients with ABI with 83.3 and 85.9% sensitivity and specificity, with an area under the curve (AUC) of 83.5%. In contrast, other analytic or hematological parameters used in the clinic had lower AUC compared with the CD64N ratio. Moreover, a CD169Mo ratio higher than 3.3 was able to identify ACov-2 with 91.7 and 89.8 sensitivity and specificity, with the highest AUC (92.0%). Conclusion: This work confirms the previous data of CD64N and CD169Mo ratios in an independent cohort, including controlled chronic viral HIV infection patients as biomarkers of acute bacterial and viral infections, respectively. Such an approach would benefit from quick pathogen identification for a direct-therapy with a clear application in different Health Care Units, especially during this COVID pandemic.

SELECTION OF CITATIONS
SEARCH DETAIL